查看原文
其他

【人物与科研】华中师范大学朱成周教授课题组J. Catal.:酰亚胺改性氮化碳/MIL异质结的构筑及光催化降解水污染物性能研究

CBG资讯 CBG资讯 2022-06-22



导语


染料、四环素、酚类等有机污染物引起的水污染,对人类和水生生物造成严重影响。目前,光催化降解水污染物已成为研究热点。因此,开发高性能的光催化剂意义重大。近日,华中师范大学朱成周教授课题组在此研究方向上取得重要进展,相关成果发表于Journal of Catalysis(DOI: 10.1016/j.jcat.2021.05.007)。



朱成周教授简介


朱成周,男,华中师范大学化学学院教授、博士生导师、海外高层次人才入选者、德国洪堡学者、2018和2020年科睿唯安“全球高被引科学家”;主要研究方向是纳米催化与传感,至今以第一/通讯作者在Chem. Rev.、Chem. Soc. Rev.、Adv. Mater.、Angew. Chem. Int. Ed.Anal. Chem.等国际著名学术期刊发表学术论文100多篇,总引近17000次(Google Scholar),H-index为65,26篇论文入选ESI高被引论文;担任期刊Frontiers Bioengineering and Biotechnology副主编,Analytica Chimica ActaBiosensors等期刊编委和《物理化学学报》青年编委。




前沿科研成果


酰亚胺改性氮化碳/MIL异质结的构筑及光催化降解水污染物性能研究


石墨相氮化碳(g-C3N4)是光催化降解污染物中常用的无金属半导体。然而,其比表面积低、电子-空穴对难以分离、可见光利用率差,从而导致其光催化降解水污染物的性能较差。近年来,分子掺杂策略常用于调控g-C3N4的电子结构。例如,一些单体,如巴比妥酸、苯脲和喹诺酮,将其引入到g-C3N4框架结构中,能够使g-C3N4吸收发生一定程度的红移。因此,优化掺杂结构模块对于调节g-C3N4的电子结构和能带构型至关重要。众所周知,以给体-受体结构(D-A)构建的聚合物由于强的分子内电荷转移,更容易获得显著的吸收峰红移。受此启发,作者将摩尔吸光率高和电荷转移快的缺电子单元苝二酰亚胺(PDI)引入g-C3N4中,制备了改性的PDI-g-C3N4。此外,为了进一步减少光生载流子的复合,作者在PDI-g-C3N4表面上原位生长另一种高效半导体NH2-MIL-53(Fe)(MIL)。通过调控PDI-g-C3N4和MIL的质量分数,构建了PDI-g-C3N4/MIL的高效异质结。最后,制备的PDI-g-C3N4/MIL具有良好的光催化降解性能,为水污染处理提供实际应用前景。


图1. PDI-g-C3N4光催化降解有机污染物示意图

(来源:Journal of Catalysis

 

首先,作者通过XRD和FT-IR确定了催化剂的结构,可以看到制备PDI-g-C3N4保留了C3N4的结构,并具有酰亚胺的特征峰。通过TEM确定催化剂的形貌,合成的八面体NH2-MIL-53(Fe) (MIL)均匀地分布在PDI-g-C3N4片层上。


图2. 催化剂的(a)X射线衍射图谱(b)红外图谱;目标催化剂的扫描电镜(c)2 μm、(d)500 nm;(f)高角暗场图像以及元素分布图像

(来源:Journal of Catalysis

 

在确定合成目标催化剂后,作者对其EPR、固体紫外、稳态荧光、光电流和阻抗进行测试。与PMDI-g-C3N4和g-C3N4相比,PDI-g-C3N4的EPR强度较强(图3a),说明π共轭芳香环中碳原子的未对电子较多,电子离域能力越强,有利于光生载流子的分离。如图3b所示,g-C3N4的光吸收边在460 nm左右,而PDI-g-C3N4的吸收边明显红移到660 nm,表明PDI-g-C3N4具有良好的吸光能力。随后,通过Tauc图得到PDI-g-C3N4带隙(Eg)较小1.89 eV(图3c),说明PDI-g-C3N4能最大限度利用可见光。稳态荧光,瞬态光电流和电化学阻抗谱测试表明PDI-g-C3N4/MIL异质结加速了光生载流子的转移,复合速率最低,从而提高光催化性能。


图3. 催化剂的 (a) 电子顺磁共振、(b)固体紫外吸收、(c)光学带隙、(d)稳态荧光、(f)瞬态光电流、(d)阻抗。

(来源:Journal of Catalysis


随后,作者对催化剂光降解性能进行测试,PDI-g-C3N4/MIL在过氧化氢和光照条件下对于染料罗丹明具有良好的降解效果。作者还对机理进行了研究,发现了羟基自由基是降解污染物的主要活性物种。


图4. (a)不同类型的光催化剂、(b)不同的条件、(c)不同的捕获剂条件下的降解图。(d)光照条件下PDI-g-C3N4/MIL的DMPO-·OH和的电子顺磁共振谱。光照条件下不同材料的PDI-g-C3N4/MIL的(e)DMPO-·OH和(f)的电子顺磁共振谱。

(来源:Journal of Catalysis

 

综上,本文在g-C3N4的框架中引入了n型有机半导体单元-苝二酰亚胺(PDI),构建了具有给体-受体结构的聚合物,改善了能带结构,在g-C3N4类材料中具有目前最广泛的可见光响应。此外,在PDI-g-C3N4表面原位生长NH2-MIL-53(Fe),进一步促进界面光生载流子的分离和转移。最终,目标光催化剂在H2O2和可见光照射存在下对有机污染物的光降解表现出优越的性能,为废水处理的实际应用提供了潜在的方向。


这一成果以“Imide modification coupling with NH2-MIL-53(Fe) boosts the photocatalytic performance of graphitic carbon nitride for efficient water remediation”为题发表在Journal of Catalysis(DOI: 10.1016/j.jcat.2021.05.007)上,第一作者为华中师范大学硕士生王小思,通讯作者为华中师范大学朱成周教授和顾文玲副教授以及武汉工程大学胡六永副教授(论文作者:Xiaosi Wang, Guojuan Chen, Hengjia Wang, Yu Wu,  Xiaoqian Wei, Jing Wen, Liuyong Hu, Wenling Gu, Chengzhou Zhu)。


原文(扫描或长按二维码,识别后直达原文页面):


关于人物与科研

在科技元素在经济生活中日益受到重视的今天,中国迎来了“科学技术爆发的节点”。科技进步的背后是无数科学家的耕耘。在化学领域,在追求创新驱动的大背景下,国际合作加强,学成归国人员在研发领域的影响日益突出,国内涌现出众多非常优秀的课题组。为此,CBG资讯采取1+X报道机制,CBG资讯、ChemBeanGo APP、ChemBeanGo官方微博、CBG微信订阅号等平台合力推出“人物与科研”栏目,走近国内颇具代表性的课题组,关注他们的研究,倾听他们的故事,记录他们的风采,发掘他们的科研精神。欢迎来稿,请联系C菌(chembeango101)。


CBG资讯一直致力于追踪新鲜科研资讯、解读前沿科研成果。如果你也对科研干货、高校招聘、不定期福利(现金红包、翻译奖励、实验室耗材优惠券等)有兴趣,那么,请长按并识别下图二维码,添加C菌微信(微信号:chembeango101),备注:进群


上海有机所何智涛课题组JACS:协同催化的手性联烯的立体发散性合成新进展
南京工业大学解沛忠课题组Org. Lett.:烯基sp2 C-H键的脱水烯丙基化反应
安徽大学宣俊课题组:可见光促进氮杂环丙烷和咪唑啉的选择性合成
中科大王官武教授课题组:铜催化的富勒烯稠合内酰胺的合成及其进一步电化学官能化反应
中山大学柯卓锋课题组:Ir介导的吡啶选择性邻位C–H键活化——路易斯酸性硼基作用机理



您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存